On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals

نویسندگان

  • Fanghua Lin
  • Changyou Wang
  • Roger Temam
چکیده

For any n-dimensional compact Riemannian manifold (M, g) without boundary and another compact Riemannian manifold (N,h), we establish the uniqueness of the heat flow of harmonic maps from M to N in the class C([0, T ),W ). For the hydrodynamic flow (u, d) of nematic liquid crystals in dimensions n = 2 or 3, we show the uniqueness holds for the class of weak solutions provided either (i) for n = 2, u ∈ Lt Lx ∩LtH x, ∇P ∈ L 4 3 t L 4 3 x , and ∇d ∈ Lt Lx ∩LtH x; or (ii) for n = 3, u ∈ Lt Lx ∩ LtH x ∩ C([0, T ), L), P ∈ L n 2 t L n 2 x , and ∇d ∈ LtL 2 x ∩C([0, T ), L). This answers affirmatively the uniqueness question posed by Lin-Lin-Wang. The proofs are very elementary.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE UNIQUENESS OF HEAT FLOW OF HARMONIC MAPS AND HYDRODYNAMIC FLOW OF NEMATIC LIQUID CRYSTALS By

For any n-dimensional compact Riemannian manifold (M, g) without boundary and another compact Riemannian manifold (N,h), we establish the uniqueness of the heat flow of harmonic maps from M to N in the class C([0, T ),W ). For the hydrodynamic flow (u, d) of nematic liquid crystals in dimensions n = 2 or 3, we show the uniqueness holds for the class of weak solutions provided either (i) for n =...

متن کامل

Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data

We investigate the well-posedness of (i) the heat flow of harmonic maps from R to a compact Riemannian manifold N without boundary for initial data in BMO; and (ii) the hydrodynamic flow (u, d) of nematic liquid crystals on R for initial data in BMO−1 × BMO.

متن کامل

Recent developments of analysis for hydrodynamic flow of nematic liquid crystals.

The study of hydrodynamics of liquid crystals leads to many fascinating mathematical problems, which has prompted various interesting works recently. This article reviews the static Oseen-Frank theory and surveys some recent progress on the existence, regularity, uniqueness and large time asymptotic of the hydrodynamic flow of nematic liquid crystals. We will also propose a few interesting ques...

متن کامل

Blow up criterion for nematic liquid crystal flows

In this paper, we establish a blow up criterion for the short time classical solution of the nematic liquid crystal flow, a simplified version of Ericksen-Leslie system modeling the hydrodynamic evolution of nematic liquid crystals, in dimensions two and three. More precisely, 0 < T∗ < +∞ is the maximal time interval iff (i) for n = 3, |ω|+|∇d|2 / ∈ Lt L ∞ x (R × [0, T∗]); and (ii) for n = 2, |...

متن کامل

Conjugate Heat Transfer of MHD non-Darcy Mixed Convection Flow of a Nanofluid over a Vertical Slender Hollow Cylinder Embedded in Porous Media

In this paper, conjugate heat transfer of magneto hydrodynamic mixed convection of nanofluid about a vertical slender hollow cylinder embedded in a porous medium with high porosity have been numerically studied. The Forchheimer’s modification of Darcy’s law was used in representing the nanofluid motion inside the porous media. The governing boundary layer equations were transformed to non-dimen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010